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A simple approach was developed for numerical evaluation of unknown parameters of
Williams-Landel-Ferry equation used for non-linear analysis. The approach consists of an
iterative process, where each iteration is reduced to a linear regression problem with
respect to a specific set of parameters. The process continues until the required accuracy
is satisfied. The approach accounts for the non-linearity of deformation, shows fast
convergence, and offers high statistical reliability. Good correlation was found between
predicted and measured magnitudes of storage modulus for an elastomer considered in
this study. © 2000 Kluwer Academic Publishers

1. Introduction while 8 is the empirical material parametewy is an
Visco-elastic properties of polymers and elastomericarbitrary reference frequencéy is the shear modulus
materials are reported to be very sensitive to ambiemat T = Tp andw = wy.

temperature and frequency of loading (see, for example If Gg is assumed to be a material constant at fixed
[1-5]). Empirical Williams-Landel-Ferry transforma- temperature and frequency (i.e., not a function of
tion [1] or a so-called WLF equation is widely used to load) phenomenological approximation @f(T, @)
predict the effect of temperaturg, and frequencyz ~ may be carried out using a relevant statistical treat-
on material behavior. Shear modul@s for example, ment, such as the method of least squares (MLS). How-

may be written as ever, visco-elastic properties of elastomeric materials
depend on the stress-strain state due to significant lev-
G =0G(T,w) = G(zy) (1) els of non-linearity. Therefore, in the domain of prac-

tical interest, shear modulus should be expressed
wherew; is the reduced frequency and adjusted at éas G=G(T, @, y), wherey is the loading charac-

given temperature as [1] teristic (strain amplitude of cyclic loading). Function

G(T, @, y) is usually approximated in engineering ap-
o = WAT; (2) plications as

where G(T. @, y) = ¥(T. @)Go(y) (6)

where the functionGg(y) reflects the non-linear re-
ex { —AT ~To) } (3) sponse and may be written as a polynomial
oT = P ——
TP BT T ) )
A=28.86 andB = 1016°C are empirical material pa- Go(y) =Y _ gny" (7)
n=0

rameters and assumed to be absolute constants for any

polymer [1]. To is a reference temperature approxi- Characterization o&(T, @, y) is much more difficult

mately 50°C above the glass transition temperature ofthan evaluating (T, =) for a linear analysis, since the

the polymer [1]. non-linearity significantly complicates statistical treat-
In literature, itis frequently shown (see, for example, ment of the problem. The difficulty is associated with

reviews [3-5]) that the relation between I@&)(and the fact that parametess, B, andg, introduced in the

log(wy) is almost linear in the region of rubber-like classical linear analysis, have to reflect the non-linear

behavior. ThusG(T, @) may be approximated as nature of loading. If parameters Gf(y’) were approxi-
mated at specific values ®fandw , the predicted func-
G(T,w) = V(T, @)Go (4)  tion Go(y) would be valid for those conditions only. On
the other hand, approximations f@(T, ') can be de-
where veloped exclusively at specific values;of

8 B The purpose of this paper is to propose a simple ap-
Wy w RS

(T, w) = {_} = { (—)aT} (5)  proach for the characterization of parameters account-
wo wo ing for the non-linearity of material response.
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2. Approach where experimental magnitudes @ =W(T, w)

In this study, parameter& and B are not considered corresponding t&th observation are calculated as

as absolute constants, and evaluated therefore, as spe-

cific characteristics of a given material obtained us- Wk ch G® 13

ing a statistical treatment. Thus, material parameters - Go(y(k)) - ZN 9 [y(k)]n' (13)
on(n=0,...,N), 8, A, Bmay be evaluated using rel- n=0 <N

evant experimental data obtained at different loading Taking the logarithm of both sides, Equation 12 can
conditions, temperatures, and frequencies. If the expe presented as

perimental data set includ@s?, w®, y® andG®;

k=1,..., K, whereK is the number of experiments oK
(population size), the unknown material parameters log[¥(T, @)] = ﬂ'Og[w—]
may be evaluated in principle using MLS as 0
+(AB)| ————— |+ (-AB). (19)
£= B+TM T, ’
1 K 5 or
K > {GW —G(B. A B, g, TW, w®, y®)}
k=1 Y = C1X1 + CaX2 + Co (15)
— min ) where
where the objective is to minimiZeand the analytical
appro_ximatiorG(ﬁ, A B, g T, o, y)_is given b_y Ex- y = log[¥(T, @)]; xi = Iog[z}
pression (6). It should be noted that direct solution of (8) wo
with respect tay,, B, A, B cannot be obtained through (16)
a system of linear equations due to the complex form Xo = 1 ;
of Equation 6. The solution is generally reduced to a B+T-To
multi-dimensional, multi-extremum problem, which is CL= B Co= ABB: Co— —AB. (17)

very difficult to solve numerically. The following iter-
ative procedure is proposed to overcame this dn‘flcultyhl_hiS problem of linear regression for Equation 15 may

Step 1. Introduce initia{rough approximationsmag-  be easily solved using MLS. (Note thatis calculated
nitudes of parameters, A, B. in Equation 16 using the initiafgugh) magnitude in-
Step 2. Calculate refined magnitudes of parametgrs g troduced forB in Step 1). Unknown parameters can be
Here, Equation 6 is written according to approximationcalculated using Equation 17 as:

(7) as
B=c;, A=-C/c; B=-cy/co. (18)
N
Go(y) = Zgnyn (9) Step 4. Convergence conditioti.the difference be-
=0 tween solutions (18) and the ones introduced in Step 1
are larger than the requested toleranefnedsolutions
where (18) are considered as theughones in Step 2 for the
next iteration. Therefore, the required accuracy may be
Go(y) = G G (10) satisfied by increasing the number of iterations.

VT, o) ([o p
| e}
3. Numerical results

Statistical characterization of Equation 9 with respecttdn this paper, storage shear modul@swill be con-
parameters), may be easily developed using classicalsidered to demonstrate the application of the proposed
MLS. For this simple statistical problem, the responseénéthod. Consider a typical elastomeric material tested
ng) corresponding tckth experimental poiny® is  atthree temperatures (30, 60, and@)and three fre-
calculated as guencies (0.1; 1; and 10 Hz) under sinusoidal shear
strain, y, between 0 and 10%. The effect of loading
® G® on G is shown in Fig. 1a for different combinations
0o = K B (1) of temperatures and frequencies. Each individual curve
{[—]aT [T(k)]} G(y) at specificT ande may be approximated by a
power series using classical MLS. Characterization of

' . the master-curve for the entire set of experimental data,
Step 3. Calculate refined magnitudes of paramegers however, has to be done using the proposed method.

A, andB. These parameters are evaluated ugingal- Table | lists the results of statistical iterative proce-
culated in Step 2. In such a case, Equation 7 can bg, e for T, = 25°C where the following initial values
written as were usedg =0.01; A=15°C; B = 150°C. The pa-
P rameters8 andg, are shown to converge quickly and
(T, o) = { (E)O[T (T)} , (12)  anaccuracy of three digits is guaranteed after 3—4 itera-
o tions (see, Table I). Even though, the parameteasnd
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TABLE | Convemgence of the statistical parameterdgt= 25°C

L B A B @ (MPa) 01 (MPa) 92 (MPa) 93 (MPa) £ (MPa)
0 0.01 15.0 150.0 — — — — —
1 0.04936 13.76 172.1 1.926 0.00124 -50.29 —0.1658 0.17292
2 0.04934 16.91 177.4 2.071 0.00133 —53.81 —0.1770 0.11903
3 0.04934 17.72 178.5 2.114 0.00135 —54.89 —0.1805 0.11306
4 0.04934 17.91 178.5 2.125 0.00136 —55.18 -0.1815 0.11255
5 0.04934 17.94 178.1 2.128 0.00136 —55.25 -0.1817 0.11250
6 0.04934 17.92 177.7 2.129 0.00136 —55.27 -0.1818 0.11250
20 0.04934 17.48 171.8 2.130 0.00136 —55.29 -0.1819 0.11250
3.0 -
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Figure 1 Dependency of storage shear modulus on temperature, frequency and amplitude strain (a) and respective master-curve (b).

B do not converge fast, characteristics of dispergion not affect the accuracy of prediction since variation in
calculated by Equation 8, is practically the same for¢ is less than 1%.

L >3-4, wherel is the number of iterations. Inother ~ Generally speaking, paramet& may be consid-
words, the same accuracy of prediction may be guararered as an unknown value as well, since the Williams-
teed at different combinations & and B. Although, Landel-Ferry equation is an empirical approximation
in this study the magnitudes &fandB atL =20 were  andthe physical meaning @ isignored. To generalize
used, the prediction using values AfandB atL =4  the iterative approach, the residual paramgtenay be
would have been equally good from the viewpoint of calculated as a function d§ according to Equation 8.
engineering applications. The process of convergenc€éhen, minimization o& (Tp), a one-parameter convex
practically does not depend on initial values, if they arefunction, can be performed using classical min-max
positive andB +T® — Ty > 0. Results presented in techniques. Parametdp, providing the lowest value
Table Il show it on example of the effect of initially in- for &, can be used in the analysis. Effect of initial tem-
troduced rough parametgr _o. While there is certain  peratureTp, on& isillustrated in Table Ill. The variation
discrepancy in parametefsandB, it practically does in & was less than 1% whef, was increased from 0
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TABLE |l Statistical parameters at= 20 (Top = 25°C)

BL=o B A B & (MPa) 91 (MPa) 92 (MPa) g3 (MPa) § (MPa)

0.01 0.04934 17.48 171.8 2.130 0.00136 —55.29 -0.1819 0.11250
0.05 0.04936 15.35 143.0 2.132 0.00136 —55.37 -0.1821 0.11301
0.10 0.04940 12.88 109.8 2.137 0.00137 —55.49 -0.1825 0.11382

TABLE |1l Dependence of the statistical parameter§gat L = 20 (8- = 0.05)

To B A B @ (MPa) 91 (MPa) 92 (MPa) 93 (MPa) & (MPa)
0 0.04933 21.44 161.5 2.452 0.00157 —63.67 —0.2094 0.1124
20 0.04936 16.49 146.1 2.190 0.00140 —56.85 —0.1870 0.1129
40 0.04958 12.45 139.2 1.982 0.00127 —51.47 —0.1693 0.1134
60 0.04941 9.681 143.7 1.832 0.00117 —47.58 —0.1565 0.1139
80 0.04939 9.133 1721 1.728 0.00111 —44.87 —0.1476 0.1136

to 80°C. While 8 is practically independent ofy, pa-  frequencies are analyzed together until requested con-

rametersA, B, andg, were found to be affected by the ditions of convergence are satisfied. Since the entire ex-

initial temperature. Consequently, in engineering appliperimental population is treated simultaneously, results

cations, parametély may be chosen arbitrarily in the obtained possess high statistical reliability. Desired ac-

0-80°C range. curacy may be obtained by 3—4 iterations. The statis-
Arelevant master-curve (i.e., entire population of ex-tical method was experimentally verified for a typical

perimental data at different temperatures and frequerelastomer at three temperatures and three frequencies,

cies together) may be constructed as a one-parametand the effect of non-linearity was shown.

dependenc&, = Gy(y). Here, magnitudes (ﬁg‘) are

calculated using Equation 11 for eakt observation.
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