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A simple approach was developed for numerical evaluation of unknown parameters of
Williams-Landel-Ferry equation used for non-linear analysis. The approach consists of an
iterative process, where each iteration is reduced to a linear regression problem with
respect to a specific set of parameters. The process continues until the required accuracy
is satisfied. The approach accounts for the non-linearity of deformation, shows fast
convergence, and offers high statistical reliability. Good correlation was found between
predicted and measured magnitudes of storage modulus for an elastomer considered in
this study. C© 2000 Kluwer Academic Publishers

1. Introduction
Visco-elastic properties of polymers and elastomeric
materials are reported to be very sensitive to ambient
temperature and frequency of loading (see, for example
[1–5]). Empirical Williams-Landel-Ferry transforma-
tion [1] or a so-called WLF equation is widely used to
predict the effect of temperature,T , and frequency,$
on material behavior. Shear modulusG, for example,
may be written as

G = G(T,$ ) = G($r ) (1)

where$r is the reduced frequency and adjusted at a
given temperature as [1]

$r = $αT ; (2)

where

αT = exp

{ −A(T − T0)

B+ (T − T0)

}
(3)

A= 8.86 andB= 101.6 ◦C are empirical material pa-
rameters and assumed to be absolute constants for any
polymer [1]. T0 is a reference temperature approxi-
mately 50◦C above the glass transition temperature of
the polymer [1].

In literature, it is frequently shown (see, for example,
reviews [3–5]) that the relation between log(G) and
log($r ) is almost linear in the region of rubber-like
behavior. Thus,G(T,$ ) may be approximated as

G(T,$ ) = 9(T,$ )G0 (4)

where

9(T,$ ) =
{
$r

$0

}β
=
{(

$

$0

)
αT

}β
(5)

while β is the empirical material parameter;$0 is an
arbitrary reference frequency;G0 is the shear modulus
at T = T0 and$ =$0.

If G0 is assumed to be a material constant at fixed
temperature and frequency (i.e., not a function of
load) phenomenological approximation of9(T,$ )
may be carried out using a relevant statistical treat-
ment, such as the method of least squares (MLS). How-
ever, visco-elastic properties of elastomeric materials
depend on the stress-strain state due to significant lev-
els of non-linearity. Therefore, in the domain of prac-
tical interest, shear modulusG should be expressed
as G=G(T,$, γ ), whereγ is the loading charac-
teristic (strain amplitude of cyclic loading). Function
G(T,$, γ ) is usually approximated in engineering ap-
plications as

G(T,$, γ ) = 9(T,$ )G0(γ ) (6)

where the functionG0(γ ) reflects the non-linear re-
sponse and may be written as a polynomial

G0(γ ) =
N∑

n=0

gnγ
n (7)

Characterization ofG(T,$, γ ) is much more difficult
than evaluatingG(T,$ ) for a linear analysis, since the
non-linearity significantly complicates statistical treat-
ment of the problem. The difficulty is associated with
the fact that parametersA, B, andβ, introduced in the
classical linear analysis, have to reflect the non-linear
nature of loading. If parameters ofG0(γ ) were approxi-
mated at specific values ofT and$ , the predicted func-
tionG0(γ ) would be valid for those conditions only. On
the other hand, approximations for9(T,$ ) can be de-
veloped exclusively at specific values ofγ .

The purpose of this paper is to propose a simple ap-
proach for the characterization of parameters account-
ing for the non-linearity of material response.
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2. Approach
In this study, parametersA and B are not considered
as absolute constants, and evaluated therefore, as spe-
cific characteristics of a given material obtained us-
ing a statistical treatment. Thus, material parameters
gn (n= 0, . . . , N), β, A, B may be evaluated using rel-
evant experimental data obtained at different loading
conditions, temperatures, and frequencies. If the ex-
perimental data set includesT (k),$ (k), γ (k), andG(k);
k= 1, . . . , K , whereK is the number of experiments
(population size), the unknown material parameters
may be evaluated in principle using MLS as

ξ =√√√√ 1

K

K∑
k=1

{
G(k) − G

(
β, A, B, gn, T (k),$ (k), γ (k)

)}2

→ min (8)

where the objective is to minimizeξ and the analytical
approximationG(β, A, B, gn, T,$, γ ) is given by Ex-
pression (6). It should be noted that direct solution of (8)
with respect togn, β, A, B cannot be obtained through
a system of linear equations due to the complex form
of Equation 6. The solution is generally reduced to a
multi-dimensional, multi-extremum problem, which is
very difficult to solve numerically. The following iter-
ative procedure is proposed to overcame this difficulty:

Step 1. Introduce initial(rough approximations) mag-
nitudes of parametersβ, A, B.
Step 2. Calculate refined magnitudes of parameters gn.
Here, Equation 6 is written according to approximation
(7) as

G0(γ ) =
N∑

n=0

gnγ
n (9)

where

G0(γ ) = G

9(T,$ )
= G{[

$

$0

]
αT [T ]

}β (10)

Statistical characterization of Equation 9 with respect to
parametersgn may be easily developed using classical
MLS. For this simple statistical problem, the response
G(k)

0 corresponding tokth experimental pointγ (k) is
calculated as

G(k)
0 =

G(k){[
$ (k)

$0

]
αT
[
T (k)]}β (11)

Step 3. Calculate refined magnitudes of parametersβ,
A, andB. These parameters are evaluated usinggn cal-
culated in Step 2. In such a case, Equation 7 can be
written as

9(T,$ ) =
{(

$

$0

)
αT (T)

}β
, (12)

where experimental magnitudes of9(k)=9(T,$ )
corresponding tokth observation are calculated as

9(k) = G(k)

G0
(
γ (k)

) = G(k)∑N
n=0 gn

[
γ (k)

]n . (13)

Taking the logarithm of both sides, Equation 12 can
be presented as

log[9(T,$ )] = β log

[
$ (k)

ω0

]
+ (ABβ)

[
1

B+ T (k) − T0

]
+ (−Aβ), (14)

or

y = c1x1+ c2x2+ c0 (15)

where

y = log[9(T,$ )]; x1 = log

[
$

$0

]
;

(16)

x2 = 1

B+ T − T0
;

c1 = β; c2 = ABβ; c0 = −Aβ. (17)

This problem of linear regression for Equation 15 may
be easily solved using MLS. (Note thatx2 is calculated
in Equation 16 using the initial (rough) magnitude in-
troduced forB in Step 1). Unknown parameters can be
calculated using Equation 17 as:

β = c1; A = −c0/c1; B = −c2/c0. (18)

Step 4. Convergence condition.If the difference be-
tween solutions (18) and the ones introduced in Step 1
are larger than the requested tolerance,refinedsolutions
(18) are considered as theroughones in Step 2 for the
next iteration. Therefore, the required accuracy may be
satisfied by increasing the number of iterations.

3. Numerical results
In this paper, storage shear modulusG will be con-
sidered to demonstrate the application of the proposed
method. Consider a typical elastomeric material tested
at three temperatures (30, 60, and 90◦C) and three fre-
quencies (0.1; 1; and 10 Hz) under sinusoidal shear
strain,γ , between 0 and 10%. The effect of loading
on G is shown in Fig. 1a for different combinations
of temperatures and frequencies. Each individual curve
G(γ ) at specificT and$ may be approximated by a
power series using classical MLS. Characterization of
the master-curve for the entire set of experimental data,
however, has to be done using the proposed method.

Table I lists the results of statistical iterative proce-
dure forT0= 25◦C where the following initial values
were used:β = 0.01; A= 15◦C; B= 150◦C. The pa-
rametersβ andgn are shown to converge quickly and
an accuracy of three digits is guaranteed after 3–4 itera-
tions (see, Table I). Even though, the parametersA and
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TABLE I Convergence of the statistical parameters atT0 = 25◦C

L β A B g0 (MPa) g1 (MPa) g2 (MPa) g3 (MPa) ξ (MPa)

0 0.01 15.0 150.0 — — — — —
1 0.04936 13.76 172.1 1.926 0.00124 −50.29 −0.1658 0.17292
2 0.04934 16.91 177.4 2.071 0.00133 −53.81 −0.1770 0.11903
3 0.04934 17.72 178.5 2.114 0.00135 −54.89 −0.1805 0.11306
4 0.04934 17.91 178.5 2.125 0.00136 −55.18 −0.1815 0.11255
5 0.04934 17.94 178.1 2.128 0.00136 −55.25 −0.1817 0.11250
6 0.04934 17.92 177.7 2.129 0.00136 −55.27 −0.1818 0.11250
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
20 0.04934 17.48 171.8 2.130 0.00136 −55.29 −0.1819 0.11250

Figure 1 Dependency of storage shear modulus on temperature, frequency and amplitude strain (a) and respective master-curve (b).

B do not converge fast, characteristics of dispersionξ ,
calculated by Equation 8, is practically the same for
L ≥ 3−4, whereL is the number of iterations. In other
words, the same accuracy of prediction may be guaran-
teed at different combinations ofA and B. Although,
in this study the magnitudes ofA andB at L = 20 were
used, the prediction using values ofA and B at L = 4
would have been equally good from the viewpoint of
engineering applications. The process of convergence
practically does not depend on initial values, if they are
positive andB+ T (k) − T0> 0. Results presented in
Table II show it on example of the effect of initially in-
troduced rough parameterβL=0. While there is certain
discrepancy in parametersA andB, it practically does

not affect the accuracy of prediction since variation in
ξ is less than 1%.

Generally speaking, parameterT0 may be consid-
ered as an unknown value as well, since the Williams-
Landel-Ferry equation is an empirical approximation
and the physical meaning ofT0 is ignored. To generalize
the iterative approach, the residual parameterξ , may be
calculated as a function ofT0 according to Equation 8.
Then, minimization ofξ (T0), a one-parameter convex
function, can be performed using classical min-max
techniques. ParameterT0, providing the lowest value
for ξ , can be used in the analysis. Effect of initial tem-
perature,T0, onξ is illustrated in Table III. The variation
in ξ was less than 1% whenT0 was increased from 0
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TABLE I I Statistical parameters atL = 20 (T0 = 25◦C)

βL=0 β A B g0 (MPa) g1 (MPa) g2 (MPa) g3 (MPa) ξ (MPa)

0.01 0.04934 17.48 171.8 2.130 0.00136 −55.29 −0.1819 0.11250
0.05 0.04936 15.35 143.0 2.132 0.00136 −55.37 −0.1821 0.11301
0.10 0.04940 12.88 109.8 2.137 0.00137 −55.49 −0.1825 0.11382

TABLE I I I Dependence of the statistical parameters onT0 at L = 20 (βL=0 = 0.05)

T0 β A B g0 (MPa) g1 (MPa) g2 (MPa) g3 (MPa) ξ (MPa)

0 0.04933 21.44 161.5 2.452 0.00157 −63.67 −0.2094 0.1124
20 0.04936 16.49 146.1 2.190 0.00140 −56.85 −0.1870 0.1129
40 0.04958 12.45 139.2 1.982 0.00127 −51.47 −0.1693 0.1134
60 0.04941 9.681 143.7 1.832 0.00117 −47.58 −0.1565 0.1139
80 0.04939 9.133 172.1 1.728 0.00111 −44.87 −0.1476 0.1136

to 80◦C. Whileβ is practically independent onT0, pa-
rametersA, B, andgn were found to be affected by the
initial temperature. Consequently, in engineering appli-
cations, parameterT0 may be chosen arbitrarily in the
0–80◦C range.

A relevant master-curve (i.e., entire population of ex-
perimental data at different temperatures and frequen-
cies together) may be constructed as a one-parameter
dependenceG0=G0(γ ). Here, magnitudes ofG(k)

0 are
calculated using Equation 11 for eachkth observation.
Transformation from initial functionsG(γ ) to “shifted”
master-curveG0(γ ) is shown in Fig. 1b. The narrow do-
main of “shifted” points suggests a good conformation
for the method in general. Certain variability in exper-
imental data presented in Fig. 1b may be explained by
the statistical deviation.

4. Conclusion
An iterative procedure, accounting for the non-linearity
of deformation, is proposed to evaluate parameters
of the Williams-Landel-Ferry equation. Experimental
data at different loading conditions, temperatures, and

frequencies are analyzed together until requested con-
ditions of convergence are satisfied. Since the entire ex-
perimental population is treated simultaneously, results
obtained possess high statistical reliability. Desired ac-
curacy may be obtained by 3–4 iterations. The statis-
tical method was experimentally verified for a typical
elastomer at three temperatures and three frequencies,
and the effect of non-linearity was shown.
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